

"Sweet Taste Receptors Modulate Glucose Absorption"

George A Kyriazis

Assistant Professor Biological Chemistry & Pharmacology College of Medicine

Taste Receptors are nutrient chemosensors beyond the tongue

Sweet Taste Receptor sensing: Same machinery, different context

STRs regulate plasma glucose homeostasis in response to "oral" glucose delivery

intra-gastric glucose tolerance test (IG.GTT)

Glucose (1.0g/kg)

Smith et al, Mol Metab. 2018

5

Peripheral glucose disposal

Gut microbiota

T1R2 intestines have reduced rate of 3-OMG flux

3-OMG (10 or 30mM) ¹⁴C 3-O-methylglucose HO H₃CO lactisole Baso-3 Apical lateral OCH₃ ł side side HC OH **T1R2 T1R3** OH mucosa \rightarrow serosa human intestinal explants wт T1R2 3-OMG (30mM) Flux (nmol/min/cm²) p = 0.002Flux (nmol.cm ⁻².min⁻¹) 60-** 157 Flux (nmol/min/cm²) 607 50 *** 40 10 40 30 20 5 20 10. wт -0 M G 3 -O M G <u>T1R2</u> 0 + ٥ 60 120 30 90 0 10 30 Veh Lac ĉ 3-OMG (mM) time(min) 3-OMG (30mM)

`O⁻ Na⁺

The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans

A. C. Gerspach,^{1,2} R. E. Steinert,^{1,2} L. Schönenberger,¹ A. Graber-Maier,¹ and C. Beglinger^{1,2}

¹Phase 1 Research Unit, Department of Biomedicine, and ²Division of Gastroenterology, University Hospital Basel, Basel, Switzerland

Submitted 17 February 2011; accepted in final form 1 May 2011

Intragastric infusion

Inhibition of sweet chemosensory receptors alters insulin responses during glucose ingestion in healthy adults: a randomized crossover interventional study^{1,2}

Elnaz Karimian Azari,^{3,6} Kathleen R Smith,^{3,6} Fanchao Yi,⁴ Timothy F Osborne,³ Roberto Bizzotto,⁵ Andrea Mari,⁵ Richard E Pratley,^{3,4} and George A Kyriazis^{3,4}*

³Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL; ⁴Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL; and ⁵Institute of Neuroscience, National Research Council, Padova, Italy

Oral bolus

Glucose transport in the small intestine

(G. Kellett, E. Brot-Laroche, Diabetes, 2005)

Blood

T1R2 mice have reduced rate of GLUT2 translocation in response to an ig glucose load

Smith et al, Mol Metab. 2018

10

Intestinal perfusion with sucralose potentiates GLUT2 translocation in rats

GLUT2 immunoreactivity

J Physiol 582.1 (2007) pp 379-392

Potential mechanisms for the reduced rate of GLUT2 translocation in T1R2 intestines

Mechanism for the reduced rate of GLUT2 translocation in T1R2 intestine

Ex vivo Glucose flux

13

Smith et al, Mol Metab. 2018

The GLP2 analogue, teduglutide, restores plasma glucose response during an igGTT in T1R2 mice

Is T1R2-mediated nutrient chemosensing relevant to the development of metabolic disease?

Functional adaptations of intestinal STRs in response to dietary sugars

Overnight high sucrose diet (HSD) downregulates intestinal STR expression

GLUT2 Accumulation in Enterocyte Apical and Intracellular Membranes

A Study in Morbidly Obese Human Subjects and ob/ob and High Fat—Fed Mice

Amal Ait-Omar,¹ Milena Monteiro-Sepulveda,¹ Christine Poitou,^{2,3} Maude Le Gall,¹ Aurélie Cotillard,² Jules Gilet,¹ Kevin Garbin,¹ Anne Houllier,¹ Danièle Château,¹ Amélie Lacombe,⁴ Nicolas Veyrie,^{2,5} Danielle Hugol,⁶ Joan Tordjman,² Christophe Magnan,⁴ Patricia Serradas,¹ Karine Clément,^{2,3} Armelle Leturque,¹ and Edith Brot-Laroche¹

Deletion of T1R2 decreases glucose excursions during an IG.GTT in Ob/Ob mice

unpublished

Unanswered questions

Kyriazis Lab (OSU)

Ann Serna, MS Joan Serrano, PhD Amit Rai, PhD (Mehta Lab) Janet Minton, MS Ashley Francois, BS Lydia Dupont Andrea Scofield

Kyriazis Lab (SBP) Kathy Smith (Pfizer) Elnaz Karimian Azari (Metagenics) Traci LaMoia (Yale U) Katalin Karolyi (U Penn) Veronika Vargova (Florida Hospital)